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Introduction

The earliest systematic observance of sunspot activity is known to

have been discovered by the Chinese in 1382 during the Ming
Dynasty (1368 1644) when spots on the sun were noticed by

looking at the sun through thick, forest fire smoke. Not until after the
18th century did sunspot levels become more than a source of

wonderment and curiosity. Since 1834 reliable sunspot data has been
collected by the National Oceanic and Atmospheric Administration

(NOAA) and the U. S. Naval Observatory. Recently, considerable effort
has been placed upon the study of the effects of sunspots on the

ecosystem and the space environment. This chapter describes the
efforts of the Artificial Intelligence Section of the Mission Planning

and Analysis Division of the Johnson Space Center involving the

prediction of sunspot activity using neural network technologies.

Sunspots

A sunspot is a dark region on the solar
disk, indicative of a 2000°K cooler area than

the normal photospheric temperature. On the
average, sunspots are about 37,000 km in
diameter (for comparison, recall that the

earth's diameter is 12,740 km) with

exceptionally large spots having a diameter of

245,000 km. Essentially, a sunspot is an
eruption of a magnetic energy field extending
several miles beyond the sun's surface with

an accompanying sunspot of reversed polarity
acting as a sink.

Therefore, sunspots are a basic measure of

solar activity -- the more sunspots, the more

active the Sun. Associated with these

moments of high activity are increased
occurrences of solar flares, which are bursts

of electromagnetic energy. An eruption of a

solar flare is accompanied by electromagnetic

emissions in the microwave radio frequency
range. The larger solar flares may emit

relativistic charged particles and energetic
protons.

The ability to predict sunspot activity

plays an increasingly important role in both
earth and space endeavors. Among the

significant effects of sunspots are: x-ray
emissions, energetic photons, ozone density
fluctuations, solar wind variations, rainfall

and temperature changes, and disturbances of

the earth's geomagnetic fields. Such
phenomena are important to NASA because of
their adverse effect upon space environment.

For example, x-ray emissions can disrupt

radio communications by altering the electron
density in the earth's ionosphere.
Communication signals transmitted from radio

stations are either refracted or reflected by
the earth's atmosphere and returned to

receiving stations. The electron density of the

atmosphere, called "skin depth," determines
the effects of the atmosphere on radio signals

-- shorter wavelengths pass through the
ionosphere whereas longer wavelengths are

reflected. Consequently, any change in
ionosphere electron density will disrupt radio

communications and may even necessitate
changes in transmission paths of navigation

signals.
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Other adverse effects by sunspots upon the

space environment include the release or
increased activity of energetic protons closely
related to sunspot frequency. Such energetic

protons can damage electronic components
within satellites. Additionally, sunspots can

cause fluctuations of the geomagnetic field

resulting in heating of the earth's upper
atmosphere. This causes increased drag on

space structures and satellites, and
complicates predictions of satellite orbits. In

fact, increased atmospheric drag due to
sunspot activity was the chief cause for the
earlier than expected destruction of Skylab in

the late 1970s.

Backpropagation Networks

Choosing an appropriate method for

sunspot prediction requires a careful analysis
of the desired output and the characteristics
of the available data. The crux of the problem

is to forecast future sunspot activity given a
"window," or partial history, of past sunspot

measurements. Because a prediction is being
made, no traditional algorithm will suffice

since future events will never exactly
duplicate the past. In other words, a simple
review of historical data will not work. One

must be able to generalize from past

measurements to have any hope of producing
a hypothesis meaningful to an eve.at which

has yet to occur. Furthermore, a large amount
of data has already been collected which can

be brought to bear on the problem. It seems
only logical to use as much of that data as

possible to bolster the efficacy of the
generated results.

In short, the solution method used must be

able to digest the available data into patterns

which have some significance to forecasting.
One neural network paradigm in particular,
called the "generalized delta rule" or

"backpropagation," fulfills all of the

requirements outlined above. Given large sets
of input data, backpropagation networks can

be used to categorize input patterns never

before presented to the network. This

categorization is not a simple lookup of past

events but the result of generalization on the

input data based upon a blending of its
various features. To show how this can be

accomplished, it is instructive to understand

the general structure of a backpropagation
network.

Background

As the name implies, artificial neural
networks are based on concepts borrowed

from biological nervous systems. Anatomical
evidence of the nervous system indicates that

single neurons are highly interconnected to
other neurons with which they communicate

through the release of variable amounts of
neurotransmitters at the synapse. By

modelling these properties in computer
systems where interconnections are highly
distributed and each element is treated as an

individual parallel processor, interesting and
useful properties have surfaced. Artificial
neural networks have the unique property of

being able to automatically extract and

develop internal features from a given data
set and to form generalities from those

learned features.

Highlighting the mechanics of artificial
neural networks may best be done by

comparing the differences between artificial
neurai networks and the conventional

computer system. Conventional computer

systems generally consist of a centralized

processing unit and an addressable memory.
The central processing unit accesses locations

of memory where information can be stored
or retrieved. This structure is analogous to a

postman who stuffs letters into mailboxes.
Artificial neural networks, on the other hand,
consist of numerous simple processing

elements which are highly interconnected. It
is in the connections between processing

elements and not in the processing elem_nas

themselves where information in a neural

network lies. Therefore, a network's memory
is not stored in discrete locations as with a

conventional computer. Instead, information

is distributed throughout the entire network

and is retrievable only through the
interactions of its various processing
elements. Unlike conventional computer

systems where information is retrieved or
fetched from memory, an artificial neural

network can best be described as evoking its
stored information.

526



Processing Elements

As mentioned earlier, a network is

comprised of numerous, independent, highly
interconnected processing elements. For
backpropagation networks, each element can
be characterized as having some input
connections from other processing elements
and some output connections to other
elements. The basic operation of an element is
to compute its activation value based upon its
inputs and send that value to its output
elements. Figure 1 shows a schematic of a
processing element. Note that this element
has j input connections coming from j input
processing elements. Each connection has an
associated value called a weight. The output
of this processing element is fashioned to
nonlinearly transform its summed,
continuous-valued inputs by the sigmoid
transformation shown by the two formulas in

Figure 1. Understanding the details of this
transformation is not essential here; the
interested reader will find an excellent

description of such details provided by
Rummelhart et. al.[7]. For the purposes of this
discussion it is important simply to note that
a processing element's output is calculated
solely from the influence of its incoming
elements and connections.

When groups of processing elements are
arranged in sequential layers, each layer
interconnected with the subsequent layer, the
result is a wave of activations propagated

from the input processing elements, which
have no incoming connections, to the output
processing elements. The layers of elements
between the inputs and outputs take on
intermediate values which perform a

mapping from the input representation to the
output representation. It is from these
intermediate or hidden elements that the

baekpropagation network draws its
generalization properties. By forming
transformations through such intermediate

layers, a backpropagation network can
arbitrarily categorize the features of its
inputs. More importantly, since these
categorizations are formed by summing the
effects of the inputs, the result is a

generalization over the input vector.
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Figure I: Processing element in a backpropagation network.
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The Weights of a Backpropagation
Network

The" heart of the backpropagation

algorithm lies in how the values of its
interconnections, or weights, are updated.

Initially, the weights in the network are set to
some small random number to represent no

association between processing elements.

Upon being given a set of patterns

representing pairs of input/output
associations, the network enters what is called

a training phase. During training, the weights

are adjusted according to the learning

technique developed by Rumelhart et. al. The
training phase is modelled after a

behavioristic approach which operates
through reinforcement by negative feedback.
That is, the network is given an input from

some input/output pattern for which it

generates an output by propagation. Any
discrepancies found when comparing the
network's output to the desired output
constitute mistakes which are then used to
alter the network characteristics.

According to Rumelhart's technique, every

weight in the network is adjusted to minimize
the total mean square errors between the

response of the network, Ppi, and the desired

outputs, tpi ,to a given input pattern. The
indices p and i represent the pattern number
and the index to a node respectively. The

weights are adjusted according to:

Awt_t+l ) . (t) ) (n )= aawU + rlSi("+z Ps

AW .!n )
where u is the error gradient of the

weight from the jth processing element in

layer n to the i th unit in the subsequent
layer (n + I). The parameter a, performs a

damping effect through the multi-dimensional
error space by relying on the most recent

weight adjustment to determine the present

adjustment. The overall effect of this weight
adjustment is to perform a gradient descent
in the error space; however, note that true

gradient descent implies infinitesimally small
increments. Since such increments would be

impractical, _/ is used to accelerate the

learning process, Finally, the error signal, 8i, is
first determined for the output layer, N:

#i (N ) = ( ti -pi (N)) P '(El Ov ))

and then recursively back propagated

through the higher layers:

J

where P'(E) is the first derivative of P(E).

Again, the fine details of the above

equations are left to the more thorough
discussion provided by Rumelhart, though
some important features should be

emphasized. First, note that each weight is

changed according to a gradient descent
technique. This implies that the training

process is meant to converge on some minima
in the error space. The network is said to

have learned if the error at this point is below

the desired threshold set by the user at which
point no further training is performed.

Loosely speaking, this Implies that the more-
weights present, the larger the error space

and, in general, the larger the number of
minima at which the network can be satisfied.

The implication, then, is that using larger

hidden layers which require more weights
will help the network to converge.

Unfortunately, added "convergence power" is
not the only effect of increasing the numbers

of hidden processing elements. Larger hidden

layers adversely influence the generalization
capabilities of a backpropagation network. In
short, the network simply "memorizes" the

training patterns. It is only through
decreasing the number of hidden processing
elements that backpropagation networks can
be forced to generalize.

At present, tradeoffs such as these are a

typical part of designing neural networks.

Setting the number of hidden processing
elements, as well as determining values for
the constants cx and r/, is still somewhat of a

"black art" best mastered through experience.
What follows is our experience setting these

parameters for a backpropagation network
used to predict sunspot activity.
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Sunspot prediction

Several key issues must be considered

when designing with a backpropagation
network. These issues may include data

preprocessing, data format presentation to the
network, the network architecture, and the

tests for generality. Other concerns include
the number of training patterns and training

cycles required for successful generalization.
Experience has shown that, if possible, neural

networks are easier to analyze and manage
when the data is processed before it is

presented to a neural network. Common

forms of processing include normalization of
the data, separating the data or system into

its constituent forms, and compacting the data
into non-redundant formats. Figure 2

illustrates the sunspot data as supplied by the

NOAA; monthly sunspot numbers lie along the
ordinate and time ranges from years 1834 to

1984 along the abscissa. The mathematics
which describe the properties of the

backpropagation are not well understood.
Throughout the discussion, it will become

apparent that neural network designs are

primarily empirical. Therefore, we will focus
on the issues critical to the development of a
successful and usable neural network.

Selecting the training set

An immediate observation is the 11 year

cyclic period evident throughout the supplied
data. It was this observation that led to the

selection of 132 months as the input to the
neural network. The neural network had a

task which is difficult even by human pattern

recognition standards -- to predict future
solar activity based solely on historical
observations. As is evident in the data, the

neural network had to automatically

categorize between the very high frequencies

apparent on a month by month scale, the
middle frequency ranges or the 11 year cycle,
and an even closer examination reveals a

much lower frequency suppressing or
intensifying magnitudes of sunspot activity

clusters. The physical underlying phenomena
behind these solar characteristics are not well

understood by solar experts nor will the
neural network be able to explain them.

However, solar science phenomenas
were neglected and the data was fashioned

so that the neural network's only goal was to
predict a future sunspot level. Therefore, the

neural network was presented II years Of

data at the input and the output represented

the associated _future month for a particular
input pattern.

_,_ Test
250 Data

k
i 150

1834 1854 1874 1894 1914 1934 1954 I974

Year

Figure 2: Monthly sunspot numbers from 1834 to 1984 as provided
by the NOAA
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All processing elements throughout the
network used a non-linear activation function.

When the upper and lower bounds of the
sigmoidal transfer function are set at 1 and 0,

respectively, close observation reveals that

the most linear region of the processing

element's output is exhibited in the range
from 0.2 to 0.8. Therefore, the entire sunspot
data was normalized between these two

ranges; i.e., a value of 0.2 represented no

sunspot sightings whereas a value of 0.8
represented a maximum of 254 sunspot

sightings (maximum sunspot sightings
observed for the provided epoch).

Careful consideration must be given when
developing a system representation for a

neural network. Sejnowski, in his
development of NETtalk, a neural network

which learned the relationships between the

English language and phonetics, used the

1000 most commonly used words in the

English language to train NETtalk. The belief
was that a 1000 word set was rich with a

sufficient range of English to phonetic
translations to cover a large percentage of the

rules necessary to read or pronounce a word.
With NETtalk, there is the danger of selecting

such a small set of words, say 50, that the

network would undergeneralize 0r not

pronounce untrained words correctly or to
provide such a large training set, say 20,000
words, that the network would have difficulty

making distinctions and not adjust its weights
correctly. Again, no real specification or rule
of thumb exists which can assist in selecting

the appropriate training set. Until further
advances in neural networks are made,

empirical methods seem to be the only
solution here. The sunspot prediction neural

network was experimented with varying sets
of resolution in the training patterns; the

input windows were incremented by 1, 4, 8,
10, and 20 month steps. Increasingly better

prediction performance was found with
increasing step size, maximizing at 10 month

steps, and decreasing prediction performance

at 20 month steps.

Network Architecture

Another key factor in developing
successful neural networks deals with the

construction of the appropriate neural
network architecture. An earlier project
demonstrated that a neural network which

generated speech signals from a phonetic type
input could only converge with a two hidden
layer architecture. Naturally, early efforts in

sunspot prediction using neural networks

were based on a two hidden layer network
architecture. Experiments were conducted
with several neural networks architectures

which varied the numbers of processing

elements in the hidden layers. Even though
each neural network converged to an
acceptable level, every network exhibited

poor generalization capabilities. An
interesting observation in the dual hidden
layer sunspot prediction neural network

architectures was that after satisfactory levels

of convergence had been achieved, relatively
little activation was present in any of the
processing elements in the second hidden
layer. This, however, was not the ease for the

speech generation neural networks. In fact,

increased activity in the second hidden layer
for the speech generation neural network

serves as an indicator for successful
generalization.

The next phase of this project

experimented with single hidden layer neural

networks. Again, the number of processing
elements in the hidden layer were varied
from 120, 80, 60, and 30 processing elements.

Even though each neural network converged,
only the neural network with 30 hidden

processing elements displayed satisfactory
levels of generalization.
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Figure 3: Neural network architecture used to predict a
future month sunspot number given 132 (1l years) past

sunspot numbers. The number of processing elements in
the hidden layer were varied. All connections are not
shown.

Testing the network

A neural network's worthiness is not

measured by whether it can converge, but
instead to how it can draw inferences or

generalize to unforeseen stimuli. As noted

earlier, each sunspot prediction neural
network architecture experiment which

varied the number of hidden layers, the
number of processing elements in the hidden

layers, and the complexity of the training data

were all capable of converging. However,
significant prediction capabilities were only
discovered in a certain neural network

architecture with a certain degree of training
data complexity.

To test the generalization capabilities of

the network, the network was trained with
data from 1834 to 1959 and the state of the

neural network's performance was tested

against the remaining data which ranged from
1959 to 1984; i.e., the weights were not
adjusted with the data from 1959 to 1984.

Best generalization results were obtained

when a 132 input, 30 hidden, and 1 output
neural network was trained on a 10 month

increment input pattern. Figure 4.0 is the RMS
error of the output node with a 10 month step
and 30 hidden processing elements. An

interesting observation, which did not appear

in a_ny other error curve, is the crest found in
the neighborhood of 500 passes. Whether the
pattern in the error curve has any relevant

significance to generalization is not known.
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Figure 4: Root Mean Square (RMS) error.for th'e output of a 132-30-1 neural

network where the 11 year input window is incremented by 10 months as it
traverses through the training data.
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Figure 5a: Neural network's prediction performance after 25 passes
(average error is 9.4% and RMS error is 11.3% for test segment).
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Figure 5c: Neural network's prediction performance after 610 passes

(average error is 3.35% and RMS error is 4.58% for test segment).
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Figure 5b: Neural network's prediction performance after 260 passes

(average error is 12.24% and RMS error is 18.16% for test segment).
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Figure 5d: Neural network's prediction performance after 810 passes
(average error is 5.9% and RMS error is 8.6% for test segment).

Figure 5 illustrates several performance
_cneralization states of the 132-30-1 neural
,etwork during the training process. The

neural network's prediction capabilities were

determined by suspending the "learning"
process and then evoking the neural network
with the last 132 months in the training set.

The neural network's "prediction" or output
was then appended to the tail end of the

excitation source. This process was repeated
for all the data points necessary to cover the

remaining test portion of the actual sunspot
number data.

The graphs show that, as expected, the
neural network performed poorly in the early

stages of training, peaked in the intermediate
stages, and then returned to relatively poorer

performances with continued training. For
actual sunspot prediction uses, this neural

Conclusion

In summary, this work shows that neural
networks are indeed a very useful tool for

developing system models. Several key
concerns have been pointed out which are

necessary in developing useful neural

network based systems.
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